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Purpose: We evaluated the diagnostic yield in pediatric dilated
cardiomyopathy (DCM) of combining exome sequencing (ES)-
based targeted analysis and genome-wide copy-number variation
(CNV) analysis. Based on our findings, we retrospectively designed
an effective approach for genetic testing in pediatric DCM.

Methods: We identified 95 patients (in 85 families) with pediatric
onset of DCM. We initially excluded 13 of these families because they
already had a genetic diagnosis, leaving a total of 31 probands for single-
nucleotide polymorphism (SNP) array and trio-ES. We used Human
Phenotype Ontology (HPO)-based filtering for our data analysis.

Results: We reached a genetic diagnosis in 15/31 (48.4%) families. ES
yielded a diagnosis in 13 probands (13/15; 86.7%), with most variants
being found in genes encoding structural cardiomyocyte components.

Two large deletions were identified using SNP array. If we had included
the 13 excluded families, our estimated yield would have been 54%.

Conclusion: We propose a standardized, stepwise analysis of (i) well-
known cardiomyopathy genes, (ii) CNVs, (iii) all genes assigned to HPO
cardiomyopathy, and (iv) if appropriate, genes assigned to other HPO
terms. This diagnostic approach yields the highest increase at each
subsequent step and reduces analytic effort, cost, the number of variants
of unknown clinical significance, and the chance of incidental findings.
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INTRODUCTION
Dilated cardiomyopathy (DCM), characterized by dilation and
impaired contraction of the left ventricle or both ventricles, is the
most common type of cardiomyopathy (CM) among children
younger than 18 years, with an incidence of 0.57 (95% CI: 0.52–
0.63) per 100,000 children in the United States.1 The etiology of
pediatric DCM encompasses most of the genetic causes that also
lead to isolated CM in adults,2,3 and is usually autosomal
dominantly (AD) inherited. However, in 14% of pediatric cases,
DCM is associated with extracardiac features, pointing toward a
wider spectrum of causes, including malformation syndromes,
neuromuscular diseases, and metabolic disorders.1 These are often
de novo cases or show an X-linked, autosomal recessive (AR) or
mitochondrial inheritance pattern. Furthermore, copy-number
variants (CNVs) may be identified in patients with multiple
congenital anomalies and/or intellectual disability presenting with
DCM4,5 as well as in patients with isolated DCM.6–9

The cause of DCM in children is an independent predictor
of the combined outcome of death or transplantation.1

An early genetic diagnosis is therefore very important in
determining the etiology, disease course, and prognosis, and
may guide rational and personalized treatment choices. In
addition, the diagnosis has major implications for family
screening and provides insight into the risk of recurrence.
The high degree of genetic heterogeneity in pediatric DCM

can currently be addressed via next-generation sequencing
(NGS). Most diagnostic labs have developed a targeted NGS
panel for adult-onset DCM, but this does not generally
encompass the most common and up-to-date neuromuscular,
syndromic, and metabolic causes of DCM in childhood.
Moreover, the continuous discovery of new disease genes
makes it difficult for diagnostic labs to keep up to date on all
the genes identified as being involved in pediatric CM; this is
a major disadvantage of targeted sequencing using an
enriched gene panel. By contrast, exome sequencing (ES),
followed by targeted analysis of a regularly updated gene
panel, has increasingly become the first-choice approach for
heterogeneous diseases (see refs. 10–13 for examples). Pugh
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et al. showed that the detection rate of pathogenic variants
increased from 7–10% to 27–37% by including larger
numbers of genes, but there is an increased likelihood of
identifying variants of uncertain clinical significance (VUS)2

and of incidental findings (IFs) that do not explain the
patient’s phenotype. Human Phenotype Ontology (HPO) has
become a useful tool in precision medicine by providing
standardized terms to describe phenotypic abnormalities.
Each term in the HPO is linked to associated diseases listed in
Online Mendelian Inheritance in Man (OMIM) and to related
genes by a combination of automated matching of the OMIM
Clinical Synopsis to HPO term labels and manual curation of
each term.14–17 These HPO terms are updated monthly and
can be used for “personalized” targeted data analysis, thereby
reducing the chance of VUS and IFs.
There have been few reports on the diagnostic yield of

genetic testing in pediatric DCM. Only one study reported a
genetic cause of DCM, in 15 of 41 children (37%); familial
disease in this cohort was high (35/41 cases, 85%) and only
a limited set of 15 genes was sequenced in 13 patients.18

In Pugh and colleagues’ cohort,2 37% were pediatric DCM
cases but an overall diagnostic yield for their pediatric
population was not reported. Both studies and current
recommendations19,20 endorse genetic testing in the pediatric
population. Schedules that define the order of analyses can
help reduce the analytical effort needed to detect a genetic
cause while minimizing the chance of IFs and the number of
VUS. As far as we know, there are no studies reporting the
yield and most effective diagnostic approach for genetic
testing in patients with childhood-onset DCM.
We therefore had two aims. The first was to evaluate the

diagnostic yield of trio-ES-based targeted analysis of genes
involved in pediatric DCM in a cohort of thoroughly
phenotyped patients, irrespective of their possible disease
etiology. Since our current variant-calling pipeline does not
detect CNVs (apart from small insertion-deletions), all
probands were also subjected to CNV analysis. The second
aim was to determine, on the basis of these findings, the
optimal diagnostic approach for establishing a genetic
diagnosis in as many patients as possible. This involved
obtaining the highest increase in yield for each subsequent
diagnostic step while minimizing the chance of IFs
and the number of VUS, in line with international
recommendations.20

MATERIALS AND METHODS
Patient selection
The University Medical Centre Groningen’s (UMCG’s)
medical research ethics committee approved this study
(approval no. 2014092), and written informed consent was
obtained from all participants or their legal representatives.
We identified 95 patients (from 85 families) with familial

and nonfamilial DCM or a mixed cardiac phenotype with age
at onset of CM o18 years. These included patients with
extracardiac features or possible myocarditis, or childhood
cancer survivors who developed DCM after anthracycline

treatment, as well as patients who experienced partial
recovery from their DCM (Supplementary Tables S1–S3
online). All patients were referred to either UMCG or Leiden
University Medical Centre (LUMC), The Netherlands,
between May 1993 and April 2017 for genetic counseling.
DCM was defined by the presence of left ventricle (LV)
dilatation (LV end-diastolic dimension > 2 SD above mean
for body surface area) and systolic dysfunction (fractional
shortening or LV ejection fraction > 2 SD below mean for
age) not explained by abnormal loading conditions20 or
evidence for DCM from autopsy.
Patients with a genetic diagnosis explaining their phenotype

and the course of their disease were excluded from our ES and
CNV analysis for this project (Supplementary Table S1). We
did, however, offer ES to patients with a (likely) pathogenic
variant that may not fully explain their phenotype or disease
course, for example, a 9-year-old patient with a dramatic
disease course who carried a truncating TTN variant, which is
usually associated with adult onset and a relatively benign
course.21 We recontacted all the remaining gene/mutation-
elusive DCM patients who had been evaluated before the
introduction of diagnostic ES.
All patients were phenotyped by a cardiologist and clinical

geneticist, sometimes accompanied by a pediatric neurologist,

Table 1 Characteristics of 31 index patients and four
siblings who underwent ES/WGS and CNV analysis

n %

Male 18/35 51.4

Age group

o1 year 14/35 40.0

1 to o6 years 4/35 11.4

6 to o12 years 8/35 22.9

≥ 12 years 9/35 25.7

Race

White 31/35 88.6

Black or African 1/35 2.9

South Asian 3/35 8.6

Prodromal symptoms 13/35 37.1

History of childhood cancer—chemotherapy 2/35 6.7

End point

No 22/35 62.9

LVAD 1/35 2.9

HtX 3/35 8.6

Death 9/35 25.7

Features of LVNC identified during follow-up or at

postmortem investigation

4/35 11.4

Extracardiac features 16/35 45.7

Consanguineous parents 5/31 16.1

Positive family history for cardiomyopathy 7/16 43.8

Cardiac screening was advised for first-degree relatives in 26 families, and rela-
tives of at least 16 index patients underwent electrocardiography and echocardio-
graphy.
CNV, copy-number variation; ES/WGS, exome sequencing/whole-genome sequen-
cing; HtX, heart transplantation; LVAD, left ventricular assist device; LVNC, left
ventricular noncompaction.
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all of whom reviewed the case. The clinical geneticist
examined the patient to look for dysmorphisms and
extracardiac features at the time of counseling for ES and
CNV analysis and took a three-generation family history. and
physically examined the patient to look for dysmorphisms
and neurological and other extracardiac features at the time of
counseling for ES and CNV analysis.

CNV analysis and homozygosity mapping (single-
nucleotide polymorphism (SNP) array)
Genomic DNA from the affected child and its parents was
extracted from peripheral blood or fibroblasts. Genome-wide
genotyping, using HumanCytoSNP-850K SNP array accord-
ing to the manufacturer’s protocols (Illumina, San Diego,
CA), was performed to identify CNVs and/or copy-number
neutral homozygous regions, as described in Supplementary
Materials and Methods.

Exome sequencing and data analysis
Exome sequencing and variant calling are described in the
Supplementary Materials and Methods. Briefly, the exome
was captured with the Agilent Sureselect XT Human All Exon
V5 or V6 kit (Agilent, Santa Clara, CA). Exome libraries were
sequenced on an HiSeq2500 or a NextSeq500 machine
(Illumina, San Diego, CA) with 2 × 100 bp and 2 × 150 bp
paired-end reads, respectively, at an average coverage of 100 ×
and with > 90% of the exome covered > 20 × . Sequence reads
were aligned to the human reference genome GRCh37/hg19
with the Burrows-Wheeler Aligner version 0.7.5a.22 Variants
were called using Genome Analysis Toolkit (GATK)
software.23,24 For two patients (F6P1 and F26P1), whole-
genome sequencing (WGS) was performed to avoid time-
consuming capturing steps because of their severe clinical
conditions and young age, as described previously25

(Supplementary Materials and Methods).
A gene list of 310 genes was created based on the HPO term

cardiomyopathy (HP:0001638; http://www.human-pheno
type-ontology.org/), supplemented with genes not included

All patients
N = 95 (85 families)

Known genetic diagnosis
N = 16 (13 families)

Diagnoses that WOULD
potentially be made by

ES/SNP array
N = 14 (11 families)

Diagnoses that would NOT
 be made by ES/SNP

array
N = 2 (2 families)

Patients we could not
inform about new

diagnostic possibilities
N = 21 (19 families)

Patients who refrained from
further testing

N = 9 (8 families)

No response
N = 14 (14 families)

Patients not included
N = 44 (41 families)

N = 79 (72 families)

Patients that were
subjected to ES/SNP array

N = 35 (31 families)

Diagnosis made by
ES/SNP array

N = 18 (15 families)

No diagnosis made by
ES/SNP array

N = 17 (16 families)

Patients with characteristic
features of mitochondrial

disorders47 mtDNA analysis
N = 2 (2 families)

Patients without
characteristic features of
mitochondrial disorders
N = 14 (13 families)

Figure 1 Study profile and diagnostic yield. We could not reach or test 19 families because, for example, an address was unavailable or the patient
had died and no DNA/tissue was available. Of the 72 families who initially had no genetic diagnosis, 31 (43%) were subjected to ES/CNV analysis.
Characteristic features of mitochondrial disease were reviewed by Leonard and Schapira.40 ES/CNV, exome sequencing/copy-number variation; mtDNA,
mitochondrial DNA; ES/SNP, exome sequencing/single-nucleotide polymorphism.
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in this HPO term but associated with CM in recent scientific
reports26 (Supplementary Table S4). To generate a “private”
gene panel, this gene list was expanded with genes assigned to
other HPO terms for individual patients when appropriate
(Supplementary Table S5). In order to define the most
relevant HPO terms, a clinical geneticist discussed the
patients’ phenotypes with a pediatric cardiologist, a
pediatrician, a neurologist, and/or other relevant physicians.
Potentially relevant variants were evaluated in a multi-

disciplinary meeting with at least a clinical geneticist, a
molecular geneticist, and a laboratory technician present.
When necessary, a cardiologist, a neurologist, and/or a
pediatrician were also consulted. An independent expert
panel was set up to discuss the clinical relevance of IFs,
predefined as likely or definitely pathogenic variants in known
disease genes unrelated to the patient’s current phenotype, as
described elsewhere.25

Calculation of internal and potential diagnostic yield
The internal yield was calculated as the number of families in
which a genetic diagnosis was found divided by the total
number of families subjected to CNV analysis and ES. Since
we excluded 13 families whose genetic diagnosis had been
established by other techniques (multiplex ligation-dependent
probe amplification (MLPA), Sanger sequencing, or targeted
NGS), the internal yield is an underestimation of the yield in
an unselected cohort. To adjust for this, these 13 families were
included in our analysis retrospectively.
The potential yield, assuming that all 85 families were offered

ES/CNV analysis as routine genetic testing, was estimated as the
internal yield plus a proportion of the 13 families who were not
included initially (because in this group too, a subset of patients
may not respond to the invitation or may refrain from further
testing). We applied a correction factor of 0.43 (proportion of
families subjected to ES/SNP array divided by the total number
of families eligible for ES/CNV analysis; 31/72). The 95%
confidence intervals of the potential yields were calculated as
exact binomial confidence intervals.

RESULTS
The clinical and genetic results for all 35 patients are
summarized in Tables 1–3 and Supplementary Tables S1,
S2, and S6.

Subjects and clinical characteristics
Figure 1 depicts the study setup. After excluding 16 patients
(13 families) who already had a genetic diagnosis that
explained their phenotype and young age at onset
(Supplementary Table S1), we identified 79 patients from
72 families that fulfilled our inclusion criteria. For 19 families,
either no DNA or tissue for a deceased patient was available
for testing or it was not feasible to inform the patients/families
about new diagnostic possibilities (i.e., NGS); another 14
patients (14 families) did not respond to the invitation, and 9
patients (8 families) refrained from further testing. We
performed trio-based ES (WGS in two) and CNV analysis

in 31 unrelated families (31 probands and 4 siblings in
total; patient characteristics are shown in Table 1 and
Supplementary Table S2).

Internal yield
A genetic diagnosis could be made in 15 of 31 families (48.4%,
95% CI: 30.2–66.9%) (Table 2). In 14 families (45.2%), the
identified genetic defect could explain their DCM. The
mutation in the 15th family has not been associated with
DCM so far, but it does explain additional clinical features
seen in the patient (see also below and Supplementary Data
2). Exome sequencing yielded a diagnosis in 13/15 families
(86.7%). Except for one, these pathogenic or likely pathogenic
variants were identified in eight CM-associated genes. Ten of
the 13 variants (76.9%) were heterozygous and found in genes
encoding structural components of cardiomyocytes, two of
these were de novo (Table 2).
In 2/13 (15.4%) families diagnosed by ES, we identified causal

variants in less-well-known CM genes: one homozygous variant
in the beta-1 galactosidase (GLB1) gene and one homozygous
variant in the SPEG complex locus (SPEG) gene. In one patient
(F6P1) carrying the GLB1 mutation, we found an additional
likely pathogenic variant in the T-box 20 (TBX20) gene. The
probands in both these families had consanguineous parents and
showed extracardiac features (Table 2).
Expanding our virtual gene panel by adding HPO terms to

the filtering tree in patients with additional features identified
compound heterozygous variants c.874C>T, p.(Arg292*)
and c.3118_3121delAACA, p.(Asn1040Glufs*9) in CEP135 in
patient F25P1. These explain her microcephaly and develop-
mental delay, but it is unclear whether they also explain her
DCM (for further discussion, see Supplementary Data).
In addition to the 13 families diagnosed by ES, two

diagnoses were made by SNP array (2/15; 13.3%, Table 2). In
patient F29P1, who presented with a severely dilated left
ventricle, several apical VSDs, and an open ductus arteriosus
at age 2 weeks, a de novo 1p36.33p36.32 deletion was
identified consistent with chromosome 1p36 deletion
syndrome (MIM607872). In patient F31P1, who presented
with decompensated heart failure at age 16 years, a de novo
10q25.2 deletion was identified encompassing the RNA-
binding motif protein 20 (RBM20) gene. A deletion including
this gene has not been described before, although RBM20
missense variants have been associated with early-onset DCM,
end-stage heart failure, and high mortality;27 several studies
suggest a loss-of-function effect.28,29

Importantly, we determined a genetic diagnosis for 6/13
patients (46.1%) with possible acute myocarditis. Although
they did not meet the Dallas criteria,30 they suffered from
prodromal symptoms mimicking a viral infection, including
abdominal pain, vomiting, upper respiratory tract infections,
and coughing. We further reached a genetic diagnosis in 1/2
patients treated with anthracycline.
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Potential yield
Because we excluded patients with a known genetic diagnosis,
our overall diagnostic yield is an underestimation. To
compensate, we included these families retrospectively and
calculated the potential yield. If we had included the 13
families who were initially excluded, the estimated yield
would have been 53.9% (95% CI: 37.4–68.7%) (Figure 2).

Variants of unknown significance
We identified up to 11 VUS per patient (n = 96, mean 2.74
per patient), including 5 chromosomal CNVs (Tables 2 and
3). During our study, the MYL2 c.263A>C, p.(Glu88Ala)
variant (identified in two patients) was reclassified as likely
pathogenic, based on segregation analysis in three families
and the identification of a common haplotype
(Supplementary Data 1 and Supplementary Figure S1).

Incidental findings
No IFs in AD inherited disease genes were found. A
pathogenic variant in AR inherited disease genes was
identified in 5 of the 35 patients (14.3%) (Tables 2 and 3):
in GYS1 (Glycogen storage disease 0, muscle, OMIM 138570),
in SGSH (Mucopolysaccharidosis type IIIA, OMIM 252900),
in PEX1 (peroxisome biogenesis disorder 1A, OMIM 214100),
in PMM2 (congenital disorder of glycosylation type Ia, OMIM
212065), and in RAB3GAP2 (Warburg micro syndrome 2,
OMIM 614225; Martsolf syndrome, OMIM 212720). None of
the patients’ phenotypes fits the respective disease, and the
carrier frequency of a disease-causing mutation in each of the
five genes is o1/60.

Toward the most effective analysis strategy
Based on our results, we retrospectively tested a stepwise
analysis on our data. To determine the most effective
approach for genetic testing and data analysis, leading to
the highest increase in yield at each subsequent diagnostic
step, we also included the patients who already had a
diagnosis. Most such genetic diagnoses would have been made
by analyzing only a limited selection of well-known CM genes
(35.6%; 95% CI: 22.7–53.0%) (Figure 2, step 1). Subsequently,
adding CNV analysis would have resulted in an increase in
diagnostic yield to 44.6% (95% CI: 29.9–61.1%) (Figure 2,
step 2). Finally, filtering the data by generating a virtual gene
panel based on the HPO-term cardiomyopathy (HP:0001638)
in the patients still without a genetic diagnosis and
subsequently adding more HPO terms, where appropriate,
would have led to an increase of up to 51.2% (95% CI: 34.8–
66.2%) and 53.9% (95% CI: 37.4–68.7%) diagnoses,
respectively.
The number of VUS identified per step are shown in Figure

2. We only encountered carriers of AR diseases at step 3 in
this study and no IFs.

DISCUSSION
Pediatric DCM is a relatively rare but life-threatening disease
with a strong genetic component. Genetic testing improves itsTa
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clinical management and has become an essential part of
contemporary care for children with DCM and their families.
NGS technology offers excellent opportunities for efficient
genetic diagnostics in general, but little has been reported for
pediatric DCM. We had a relatively large cohort of unselected,
well-phenotyped patients that provided a unique opportunity
to implement and test the efficacy of an approach involving
CNV analysis and trio-based ES with analysis of a virtual gene
panel of more than 310 CM-related genes. The use of HPO
terms for data filtering has major advantages over a fixed gene
panel as they are automatically updated and patient-specific
terms can be used. Testing 31 probands with DCM and their
parents, our approach yielded a diagnosis in 48.4% (15/31).
Applying this approach retrospectively to all our cases,
including those who already had a genetic diagnosis, would
have resulted in a yield > 50%.
We have also shown that the same genetic workup is

justified in patients with possible myocarditis and childhood
cancer survivors in whom DCM presents as a toxic side effect.
The high yield obtained with our approach also holds an

important implication: that in many cases, a “genetics-first”
approach can reduce or even avoid costly intensive care for
some children (e.g., F6P1 and F29P1) or replace other time-
consuming and/or invasive, nongenetic diagnostic testing
(e.g., F7P1). Moreover, a prospective study by Stark et al.31

showed that ES used early in the diagnostic pathway more
than triples the diagnostic rate for one-third of the cost per
diagnosis.

Stepwise diagnostic approach
To reduce the analytic effort, the number of VUS, the cost,

and the chance of identifying IFs, we now propose a
standardized, stepwise analysis of a subset of genomic data
in pediatric DCM cases (Figure 2). We prioritized the
diagnostic steps according to the highest increase in yield per
step. We do not claim that this strategy provides the best or
quickest analytical path in general; rather, it represents an ad
hoc approach inferred from our current results. The
generalizability of our stepwise approach needs to be
corroborated in larger cohorts, which also may lead to

32.3%
(10/31)

Step 1: WES filter
gene panel of 60
CM genes

Step 3: WES filter
virtual gene panel
of 250 CM genes

Step 4: WES filter
virtual gene panel
with extra HPO
terms

Step 2: CNV
analysis using
SNP array

38.7%
(12/31)

45.2%
(14/31)

48.4%
(15/31)

+1

+3

+7 35.6% 37
(1.06)

VUS
(mean number

per person)

All variants
WES

Potential yield
Of the 13 families with a
known genetic diagnosis 
(who were initially excluded
from WES/CNV analysis),
this number would have
been identified by our
approach (x 0.43)

42
(1.20)

84
(2.40)

96
(2.74)

44.6%

51.2%

53.9%+0

Internal yield

All variants
WES

Figure 2 Our proposed stepwise diagnostic approach for analyzing pediatric DCM patients and the resulting internal and potential yields.
Step 1. Analysis of a limited selection of 60 genes, encoding mostly structural components of cardiomyocytes. Step 2. CNV analysis, including
homozygosity analysis. Step 3. Reanalysis of the data by filtering for variants in a comprehensive virtual gene panel, based on the HPO term
“cardiomyopathy.” Step 4. Adding more HPO terms for filtering in those patients presenting with additional cardiac and/or noncardiac features. In the
group without a diagnosis, 43% (31/72 families) agreed to undergo ES and CNV analysis. We reasoned that the group of 16 patients (from 13
families, Supplementary Table S1) with a known genetic diagnosis, to whom we did not offer ES/CNV analysis, would not differ much from the
group that was eligible for ES/CNV analysis (e.g., no bias in severity of DCM or number of familial cases). Therefore, the same percentage of inclusions
should also be applicable to this “not offered ES/CNV analysis” group. Eleven of these 13 families would have been identified by our approach if ES/
CNV analysis had been performed as the first-tier test. The potential yield would therefore be the sum of the internal yield (15/31 families) plus the
0.43 proportion of the excluded patients who already had a genetic diagnosis (15+(11*0.43))/(31+(13*0.43)), which is 53.9%. CM, cardiomyopathy;
CNV, copy-number variation; DCM, dilated cardiomyopathy; ES, exome sequencing; HPO, Human Phenotype Ontology; SNP, single-nucleotide
polymorphism; VUS, variant of uncertain clinical significance; WES, whole-exome sequencing.
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obtain greater insight into the meaning of variants in genes
that are less often associated with CM.
Our study shows that restricting the analysis to genes

encoding desmosomal cell adhesion proteins, sarcomeric
proteins, and a few other, well-established CM genes
(n = 60) would potentially yield a diagnosis in 35.6% of
pediatric patients. This is slightly lower than the 37% yield in
a pediatric cohort reported by Rampersaud et al.18 However,
they included predominantly familial DCM (85% of cases),
whereas we included both familial cases (23%) and patients
with a negative family history for CM (77%), although cardiac
screening was performed in most, but not all, first-degree
relatives.
The addition of a CNV analysis would increase our

potential yield to 44.6%. This rise can be explained by the
relatively high percentage of patients diagnosed with Duch-
enne muscular dystrophy (Supplementary Table S1) who
carry a deletion/duplication of (at least) the DMD gene.
Finally, reanalyzing the data by filtering for variants in a

comprehensive, but personalized, virtual gene panel based on
HPO cardiomyopathy, plus additional HPO terms where
appropriate, would have resulted in a total diagnostic
potential of 51.2% and 53.9%, respectively (Figure 2, steps 3
and 4). Therefore, the presence/absence of syndromic or
extracardiac features should indicate the extent of genetic
analysis required in a clinical setting. The use of HPO terms
and stepwise data analysis reduces the number of VUS and
the chance of identifying IFs, which is in accordance with
current guidelines for genetic testing in minors32 and more
specifically for DCM.19

Pros and cons of our ES-based approach
Currently, the strategies for NGS of patients with CM can be
divided into two fundamentally different approaches: targeted
gene panel sequencing, with capture of a restricted set of
genes, and ES/WGS. The pros and cons of these approaches
for other patient categories have been extensively reviewed.33

Our approach combines the following advantages of both
methods (for related examples from our cohort, see
Supplementary Data 2).

1. Although ES data interpretation is, in general, more
complicated and time-consuming than targeted gene
panel sequencing, using virtual gene panels to filter ES
data reduces the number of genetic variants needing to
be interpreted. Moreover, by filtering for variants in the
genes of interest, the number of IFs and VUS is reduced.

2. In consanguineous families, variant filtering may first be
restricted to homozygous regions.

3. Multiple relevant variants in one patient can be
detected.18,34–36

4. Novel traits may be identified by using additional
HPO terms.

5. Our filter strategy can be applied to all cardiomyopathies
that show clinical and genetic overlap and that are

sometimes difficult to classify on echocardiographic
parameters.

6. Having the full exome available offers the option to
broaden the analysis if a diagnosis cannot be made and/
or if clinical development indicates that other
approaches are needed. This may involve alternative
filtering or “opening” the exome, which could lead to
identification of novel genes associated with pediatric
CM, as we recently showed for ALPK3.37

However, an ES-based diagnostic approach also has some
disadvantages:

1. A potentially lower vertical coverage of some regions
compared to targeted gene panel sequencing may lead to
some mutations being missed, although LaDuca et al.38

showed that ES covered 99.6% of mutations identified on
a targeted NGS panel for cardiovascular diseases.
Nevertheless, in patients for whom a specific disease,
such as DMD, is strongly suspected, targeted sequencing
of the candidate gene, including MLPA, may be
preferred to ES.

2. Broadening analysis to a larger gene panel runs the risk
of identifying VUS, as seen by the 2.5-fold higher yield of
VUS when we used expanded gene panels in our study.
However, ES does allow for stepwise data analysis to
minimize the number of additional VUS. The accuracy
of variant interpretation can be improved by access to
larger libraries of comprehensive sequencing data in
well-phenotyped CM patients and well-documented
controls, and with the availability of affected family
members for segregation analyses.

3. A longer turnaround time. During our study, turn-
around time was cut from > 26 weeks to 6 weeks, with
the potential for even shorter times.

4. ES-based analysis is more expensive than targeted NGS.
However, continuous technological innovations have
already reduced its cost, and this trend will continue.

5. Exome sequencing cannot be used to detect mutations in
noncoding regions or in mitochondrial DNA (mtDNA),
and, at the moment, our ES pipeline is not able to detect
CNVs. However, several algorithms have been developed
using a read-depth approach to identify CNVs in ES
data,39 which could increase our yield further.

WGS has several advantages over ES, including the
possibility of detecting mtDNA sequence variants and CNVs
and the elimination of time-consuming capturing steps, which
is important for critically ill patients for whom a rapid
diagnosis may influence treatment options.25 WGS may
therefore be preferred over combined ES/CNV analysis in
the future. However, given the extra cost of WGS, ES followed
by virtual targeted stepwise analyses is currently still our
preferred approach in a clinical diagnostic setting.
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Future work and perspectives
We are now analyzing the full exomes for our cohort in a
research setting, using a gene-prioritization method based on
gene coexpression networks. We are also exploring the
possibility of parallel ES and RNA sequencing to help
pinpoint candidate genes and mutations. Careful family and
cascade screening will offer more insight into the putative
pathogenesis of VUS, while data sharing, mining, and
curation, in vitro and in vivo functional analyses, RNA-
sequencing studies, and metabolomics are essential to gaining
more insight into the pathogenicity of novel variants in genes
implicated in pediatric DCM.

Conclusion
We have demonstrated that combining CNV analysis with trio-
based ES yields a fast diagnosis in more than 50% of pediatric
DCM probands, including those with possible myocarditis. To
reach the highest increase in yield and reduce the chance of
detecting noncontributory VUS or IFs, we propose a
standardized, stepwise analysis of (i) well-known CM genes,
(ii) CNVs, (iii) all genes assigned to HPO cardiomyopathy, and
(iv) if appropriate, genes assigned to other HPO terms in
pediatric DCM cases. Stepwise filtering for variants in a virtual
and flexible gene panel based on HPO terms is an effective
diagnostic strategy for pediatric DCM. We report on a
relatively small patient cohort, owing to the rarity of this
disorder. However, the relevance of our approach should be
explored in other and/or larger patient cohorts to confirm the
superiority of CNV analysis and ES combined with targeted
data analysis over other molecular and bioinformatic diagnostic
approaches. This also applies to the proposed strategy for adult
DCM/CM patients, in whom an AD mode of inheritance is
more prevalent than in children and in whom the phenotype
has become clearer regarding noncardiac symptoms. The need
for rapid diagnosis is generally less urgent in adults than in
children. DCM in children may demand a different genetic
approach from that used for adults.
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